The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2X 4X 1 1 1 1 X 1 1 1 1 1 1 1 1 4X 1 1 1 1 1 3X 1 1 1 2X 1 1 1 X 1 3X 1 1 1 X 1 2X 1 1 1 1 1 1 2X 4X 1 0 1 0 3X 2X X 1 3X+2 3X+3 3X+1 2X+1 3X+4 4X+1 2X+4 2 1 1 2X+3 3 2X+2 4 1 X+2 X+1 3 X+4 0 X+3 1 2X+3 1 2X+4 3X+1 3X+4 4X+1 4X+2 1 2X+4 2X 3X+4 1 4X+4 2X+2 X 1 X+1 1 X+4 X+2 2X+2 1 2X+1 1 3X+1 4X+4 X+1 2X+3 4 3 3X 1 4X+3 0 0 1 3X+1 2 4 X+4 3X+4 4X+4 3X+2 3X+3 X+2 X 3X 2X+2 3X+2 1 0 4X+3 X+1 3X+4 4X+3 4X 4X+1 2X+1 4X+1 X+3 3X+2 2 2X 2X+4 4X 4 2X+1 1 3X+4 2X+4 3X+3 4X+2 2X+2 X+3 X+3 3X+1 X+1 4X+2 3X+3 3X X+4 X 4X+4 X+3 3X+2 0 3X X 4 1 2X+4 2X+3 1 X+1 3X generates a code of length 62 over Z5[X]/(X^2) who´s minimum homogenous weight is 237. Homogenous weight enumerator: w(x)=1x^0+460x^237+380x^238+640x^239+556x^240+740x^241+1840x^242+320x^243+760x^244+500x^245+780x^246+1400x^247+520x^248+640x^249+516x^250+440x^251+1080x^252+480x^253+480x^254+304x^255+320x^256+780x^257+300x^258+480x^259+236x^260+220x^261+440x^262+12x^265 The gray image is a linear code over GF(5) with n=310, k=6 and d=237. This code was found by Heurico 1.16 in 0.371 seconds.